这个图聚类Python开源工具火了:可对社群结构进行可视化、检测

 最近,又有一款Python可视化工具火了。

10多年的偏关网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。成都全网营销的优势是能够根据用户设备显示端的尺寸不同,自动调整偏关建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。成都创新互联公司从事“偏关网站设计”,“偏关网站推广”以来,每个客户项目都认真落实执行。

这一次,功能是针对图聚类问题的社群结构进行检测、可视化。

该项目的帖子在reddit上一经发布,就被顶到了“机器学习板块”的榜首。

一起来看看它究竟都能用来做什么吧~

功能亮点

这款工具叫做communities, 是一个Python库,用于图聚类问题的社群结构检测。

它支持多种算法,包括:

  •  Louvain算法;
  •  Girvan-Newman算法;
  •  层次聚类算法;
  •  光谱聚类算法;
  •  Bron-Kerbosch算法。

更赞的是,communities还可以实现这些算法的可视化。

具体了解一下~

导入算法并插入矩阵

这里以Louvain算法为例。

这是一种基于模块度的社群发现算法,也是贪心算法。

它根据顶点的共享边将顶点排列成社群结构,也就是说,它将节点分为几个社群,每个社群之间共享很少的连接,但是同一社群的节点之间共享许多连接。

最终,让整个社群网络呈现出一种模块聚集的结构,实现整个社群网络的模块度的最大化。

所以首先,我们需要构建一个表示无向图的邻接矩阵,可以加权,也可以不加权,矩阵为2Dnumpy数组。

n*n矩阵则表示有n个节点,矩阵的每个位置分别表示各节点之间边的关系,有边则为1,没有边则为0。

然后,只需从communities.algorithms中导入算法并插入矩阵。

 
 
 
 
  1. import numpy as np 
  2. from communities.algorithms import louvain_method 
  3. adj_matrix = np.array([[0, 1, 1, 0, 0, 0], 
  4.                        [1, 0, 1, 0, 0, 0], 
  5.                        [1, 1, 0, 1, 0, 0], 
  6.                        [0, 0, 1, 0, 1, 1], 
  7.                        [0, 0, 0, 1, 0, 1], 
  8.                        [0, 0, 0, 1, 1, 0]]) 
  9. communities, _ = louvain_method(adj_matrix) 
  10. # >>> [{0, 1, 2}, {3, 4, 5}]

接下来输出社群列表,每个社群即为一组节点。

现可视化,并进行颜色编码

利用communities将图进行可视化,将节点分到社群中并进行颜色编码,还可以选择深色或浅色背景、保存图片、选择图片的分辨率等等 。

 
 
 
 
  1. draw_communities(adj_matrix : numpy.ndarray, communities : list, dark : bool = False, filename : str = None, seed : int = 1)

其中各参数的具体含义为:

  •  adj_matrix (numpy.ndarray):图的邻接矩阵;
  •  dark (bool, optional (default=False)):如果为 True, 则绘图为深色背景,否则为浅色背景;
  •  filename (str or None, optional (default=None)):通过 filename 路径可以将图另存为PNG格式; 设置 None 则是用交互方式显示图;
  •  dpi (int or None, optional (default=None)):每英寸的点数,控制图像的分辨率;
  •  seed (int, optional (default=2)):随机种子。

具体到Louvain算法的可视化,代码是这样的:

 
 
 
 
  1. from communities.algorithms import louvain_method 
  2. from communities.visualization import draw_communities 
  3. adj_matrix = [...] 
  4. communities, frames = louvain_method(adj_matrix) 
  5. draw_communities(adj_matrix, communities)

动画呈现算法

communities 还可以动画呈现节点分配到社群的过程。

 
 
 
 
  1. louvain_animation(adj_matrix : numpy.ndarray, frames : list, dark : bool = False, duration : int = 15, filename : str = None, dpi : int = None, seed : int = 2)

其中各参数的含义如下:

  •  adj_matrix (numpy.ndarray):图的邻接矩阵;
  •  frames (list):算法每次迭代的字典列表;
  •  每个字典都有俩个键:“C”包含节点到社群的查找表,“Q”表示图的模块度数值;
  •  此字典列表是 louvain_method的第二个返回值;
  •  dark (bool, optional (default=False)):如果为 True, 则动画为深色背景和配色方案,否则为浅色方案;
  •  duration (int, optional (default=15)):动画所需的持续时间,以秒为单位;
  •  filename (str or None, optional (default=None)):通过filename 路径将动画存为GIF;设置None则以交互方式展示动画;
  •  dpi (int or None, optional (default=None)):每英寸点数,控制动画的分辨率;
  •  seed (int, optional (default=2)):随机种子。

例如,空手道俱乐部网络中Louvain算法的动画呈现:

 
 
 
 
  1. from communities.algorithms import louvain_method 
  2. from communities.visualization import louvain_animation 
  3. adj_matrix = [...] 
  4. communities, frames = louvain_method(adj_matrix)
  5. louvain_animation(adj_matrix, frames)

我们可以看到Louvain算法的动态过程:

  •  首先扫描数据中的所有节点,将每个节点看做一个独立的社群;
  •  接下来,遍历每个节点的邻居节点,判断是否将该节点加入邻居节点所在的社群,以提升模块度;
  •  这一过程重复迭代,直到每一个节点的社群归属稳定;
  •  最后,将所有在同一个社群的节点压缩成一个新节点,计算新节点的权重,直到整个图的模块度稳定。

大家可以通过文末链接,自行尝试一下其他算法~

此外,它还可以用于社群间邻接矩阵、拉普拉斯矩阵以及模块度矩阵等。

对于这款工具,不少网友发出“awesome”、“really cool!”等花式赞叹,表示正是自己需要的。

当然,也有网友提出疑问,例如:是否可以指定执行的迭代次数(例如:提前停止)?

开发者对此表示:不能,但是对于某些算法,可以指定要将图形划分为多少个社群。

本文标题:这个图聚类Python开源工具火了:可对社群结构进行可视化、检测
本文来源:http://www.mswzjz.com/qtweb/news26/188876.html

网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联