随着互联网的发展,网络安全已成为重要的议题。而在网络安全中,漏洞扫描是非常重要的一环。漏洞扫描可以帮助我们找到网络系统的问题,从而采取措施解决这些问题。本文将介绍一些在Linux上进行网络漏洞扫描的实用方法。
创新互联服务项目包括炎陵网站建设、炎陵网站制作、炎陵网页制作以及炎陵网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,炎陵网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到炎陵省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!
1. 使用Nmap进行网络漏洞扫描
Nmap是一款常用的网络扫描工具,它可以扫描网络中的主机、端口和服务等信息,并且可以检测到一些网络漏洞。以下是使用Nmap进行漏洞扫描的步骤:
步骤1: 安装Nmap
在终端中输入以下命令进行安装:
sudo apt-get install nmap
步骤2: 执行Nmap扫描
在终端中输入以下命令进行扫描:
sudo nmap -sS -O -T4 [IP地址]
其中,-sS选项表示使用TCP SYN扫描,-O选项表示对操作系统进行探测,-T4选项表示使用T4速度模式。
步骤3: 查看扫描结果
在扫描完成后,可以查看扫描结果并根据结果来调整安全措施。
2. 使用Nikto进行Web应用漏洞扫描
Nikto是一款常用的Web应用漏洞扫描工具,它可以检测到一些常见的Web应用漏洞。以下是使用Nikto进行漏洞扫描的步骤:
步骤1: 安装Nikto
在终端中输入以下命令进行安装:
sudo apt-get install nikto
步骤2: 执行Nikto扫描
在终端中输入以下命令进行扫描:
sudo nikto -h [IP地址]
其中,-h选项表示要扫描的目标主机。
步骤3: 查看扫描结果
在扫描完成后,可以查看扫描结果并根据结果来调整安全措施。
3. 使用Metasploit进行漏洞利用
Metasploit是一款常用的漏洞利用框架,它可以快速的利用一些已知的漏洞来入侵目标主机。以下是使用Metasploit进行漏洞利用的步骤:
步骤1: 安装Metasploit
在终端中输入以下命令进行安装:
sudo apt-get install metasploit-framework
步骤2: 搜索漏洞
在终端中输入以下命令进行搜索:
msfconsole
search [漏洞名称]
其中,msfconsole命令表示进入Metasploit的控制台,search命令表示搜索漏洞。
步骤3: 利用漏洞
在搜索到漏洞后,可以使用以下命令进行利用:
use [漏洞模块名称]
set RHOST [目标主机IP地址]
exploit
其中,use命令表示使用漏洞模块,set命令表示设置目标主机IP地址,exploit命令表示执行利用。
网络漏洞扫描是网络安全的重要环节之一,它可以帮助我们找到网络系统中存在的问题,并采取措施来解决这些问题。在Linux上,有很多实用的漏洞扫描工具,如Nmap、Nikto和Metasploit等,我们可以根据实际情况选择合适的工具进行扫描和利用。通过这些工具的使用,我们可以提高网络系统的安全性,防止黑客入侵和数据泄露等问题的发生。
成都网站建设公司-创新互联,建站经验丰富以策略为先导10多年以来专注数字化网站建设,提供企业网站建设,高端网站设计,响应式网站制作,设计师量身打造品牌风格,热线:028-86922220你好,我是扮毁含一名网络管理员,Linux的漏洞扫描?、你可以用Linux自带的浏览器上网搜一下系统漏洞扫描器、自厅笑余物己做还是用XP或者其他操作系统编程,不过Linux编程环境也很强大,谢谢采纳。
漏洞扫描就是对计算机系统或者其它网络设备进行安全相关的检测,以找出安全隐患和可被黑客利用的漏洞。显然,漏洞扫描软件是把双刃剑,黑客利用它入侵系统,而系统管理员掌握它以后又可以有效的防范黑客入侵。因此,漏洞扫描是保证系统和网络安全必不可少的手段,必须仔细研究利用。
漏洞扫描通常采用两种策略,之一种是被动式策略,第二种是主动式策略。所谓被动式策略就是基于主机之上,对系统中不合适的设置,脆弱的口令以及其他同安全规则抵触的对象进行检查;而主动式策略是基于网络的,它通过执行一些脚本文件模拟对系统进行攻击的行为并记录系统的反应,从而发现其中的漏洞。利用被动式策略扫描称为系统安全扫描,利用主动式策略扫描称为网络安全扫描。
快速安装Nessus
Nessus是一个功能强大而又易于使用的远程安全扫描器。安全扫描器的功能是对指定网络进行安全检查,找出该网络是否存在有导致对手攻击的安全漏洞。该系统被设计为client/sever模式,服务器端负责进行安全检查,客户端用来配铅知世置管理服务器端。在服务端还采用了plug-in的体系,允许用户加入执行特定功能的插件,这插件可以进行更快速和更复杂的安全检查。在Nessus中还采用了一个共享的信息接口,称之知识库,其中保存了前面进行检查的结果。检查的结果可以HTML、纯文本、LaTeX(一种文本文件格式)等槐肢几种格式保存。
Nessus的优点在于:
1. 其采用了基于多种安全漏洞的扫描,避免了扫描不完整的情况。
2. 它是免费的,比起商业的安全扫描工具如ISS具有价格优势。
(1)安装和启动Nessus服务器端
以Nessus-4.2.0-es5.i386.rpmNessus使用为例,使用如下的命令对其进行安装即可:
# rpm -ivh Nessus-4.2.0-es5.i386.rpm
安装成功后,还需要添加用户来对其进行操作,步骤如下所示:
# /opt/nessus//in/nessus-adduser
//添加用户
Login : root
//设置密码
Login password :
Login password (again) :
启动nessus非常简单,使用如下命令即可:
#/in/service nessusd start
(2)安装Nessus客户端
nessus的客户端猛缓有两个版本,JAVA版本及C版本,JAVA版本的可以在多个平台中运行,C版本的支持Windows,有了这两个客户端的版本就可以在局域网的任何的一台机器上进行安全检查了。为了使用的简单起见,我们选择了一款Windows系统下的Nessus 4客户端版本进行安装和使用,也就是使用Windows客户端来控制运行于Linux下的Nessus服务器端来对局域网里面的机器进行漏洞扫描,这也是目前Nessus使用的非常流行的一种方式。具体的安装如同Windows下任何一款应用软件的安装方式相同,非常简单,这里不再赘述。
3、五步完成Nessus扫描
下面来看看使用nessus进行扫描的步骤以及效果,一般来说,使用Nessus进行扫描需要有如下5个步骤:
(1)设置服务器连接:如图1所示,首先需要设置Nessus客户端来连接Nessus服务器,在图1中,配置好相应的主机名和端口,以及登陆所需要使用的用户名和密码。
(2)设置IP范围:如图2所示,设置为IP Range。当然,这里还有其他的选项可提供选择,包括图中所示的Single Host、Subnet等,可以根据实际情况来选择。
(3)点击scan now,开始对设定范围进行扫描:如图5所示。
(4)扫描的整体效果:如图4所示,扫描给出了对172.31.12.188这台主机(Linux操作系统,RHEL 5.0版本)的扫描结果,可以很清晰看出操作系统的版本以及开放的端口,同时,也能够将开放的端口详细信息列出来。
执行 TCP 端口扫描的一种方式就是执行一部分。目标端口上的 TCP 三次握手用于识别端口是否接受连接。这一类型的扫描指代隐秘扫描, SYN 扫描,或者半开放扫描。这个秘籍演示了如何使用 Scapy 执行 TCP 隐秘扫描。
为了使用 Scapy 执行 TCP 隐秘 扫描,你需要一个运行 TCP 网络服务的远程服务器。这个例子中我们使用 Metasploitable2 实氏蔽例来执行任务。配置 Metasploitable2 的更多信息请参考之一章中的“安装 Metasploitable2”秘籍。
此外,这一节也需要编写脚本的更多信息,请参考第运耐一章中的“使用文本编辑器*VIM 和 Nano)。
为了展示如何执行 SYN 扫描,我们需要使用 Scapy 构造 TCP SYN 请求,并识别和开放端口、关闭端口以及无响应系统有关的响应。为了向给定端口发送 TCP SYN 请求,我们首先需要构建请求的各个层面。我们需要构建的之一层就是 IP 层:
为了构建请求的 IP 层,我们需要将 IP 对象赋给变量 i 。通过调用 display 函数,我们可以确定对象的属性配置。通常,发送和接受地址都设为回送地址, 127.0.0.1 。这些值可以通过修改目标地址来修改,也就是设置 i.dst 为想要扫描的地址的字符串值。通过再次调用 dislay 函数,我们看到不仅仅更新的目标地址,也自动更新了和默认接口相关的源 IP 地址。现在我们构建了请求的 IP 层,我们可以构建 TCP 层了。
为了构建请求的 TCP 层,我们使用和 IP 层相同的技巧。在这个立即中, TCP 对象赋给了 t 变量。像之前提到的那样,默认的配置可以通过调用 display 函数来确定。这里我们可以看到目标端口的默认值为 HTTP 端口 80。对于我们的首次扫描,我们将 TCP 设置保留默认。现在我们创建了 TCP 和 IP 层,我们需要将它们叠放来构造请求。
我们可以通过以斜杠分离变量来叠放 IP 和 TCP 层。这些层面之后赋给了新的变量,它代表整个请求。我们之后可以调用 dispaly 函数来查看请求的配置。一旦构建了请求,可以将其传递给 sr1 函数来分析响应:
相同的请求可以不通过构建和堆叠每一层来执行。反之,我们使用单独的一条命令,通过直接调用函数并传递合适的参数:
要注意当 SYN 封包发往目标 Web 服务器的 TCP 端口 80,并且该端口上运行了 HTTP 服务时,响应中会带有 TCP 标识 SA 的值,这表明 SYN 和 ACK 标识都被激活。这个响应表明特定的目标端口是开放的,并接受连接。如果相同类型的封包发往不接受连接的端口,会收到不同的请求。
当 SYN 请求发送给关闭的端口时,返回的响应中带有 TCP 标识 RA,这表明 RST 和 ACK 标识为都被激活。ACK 为仅仅用于承认请求被接受,RST 为用于断开连接,因为端口不接受连接。作为替代,如果 SYN 封包发往崩溃的系统,或者防火墙过滤了这个请求,就可能接受不到任何信息。由于这个原因,在 sr1 函数在脚本中使用时,应该始终使用 timeout 选项,来确保脚本不会在无响应的主机旁核春上挂起。
如果函数对无响应的主机使用时, timeout 值没有指定,函数会无限继续下去。这个演示中, timout 值为 1秒,用于使这个函数更加完备,响应的值可以用于判断是否收到了响应:
Python 的使用使其更易于测试变量来识别 sr1 函数是否对其复制。这可以用作初步检验,来判断是否接收到了任何响应。对于接收到的响应,可以执行一系列后续检查来判断响应表明端口开放还是关闭。这些东西可以轻易使用 Python 脚本来完成,像这样:
在这个 Python 脚本中,用于被提示来输入 IP 地址,脚本之后会对定义好的端口序列执行 SYN 扫描。脚本之后会得到每个连接的响应,并尝试判断响应的 SYN 和 ACK 标识是否激活。如果响应中出现并仅仅出现了这些标识,那么会输出相应的端口号码。
运行这个脚本之后,输出会显示所提供的 IP 地址的系统上,前 100 个端口中的开放端口。
这一类型的扫描由发送初始 SYN 封包给远程系统的目标 TCP 端口,并且通过返回的响应类型来判断端口状态来完成。如果远程系统返回了 SYN+ACK 响应,那么它正在准备建立连接,我们可以假设这个端口开放。如果服务返回了 RST 封包,这就表明端口关闭并且不接收连接。此外,如果没有返回响应,扫描系统和远程系统之间可能存在防火墙,它丢弃了请求。这也可能表明主机崩溃或者目标 IP 上没有关联任何系统。
Nmap 拥有可以执行远程系统 SYN 扫描的扫描模式。这个秘籍展示了如何使用 Namp 执行 TCP 隐秘扫描。
为了使用 Nmap 执行 TCP 隐秘扫描,你需要一个运行 TCP 网络服务的远程服务器。这个例子中我们使用 Metasploitable2 实例来执行任务。配置 Metasploitable2 的更多信息请参考之一章中的“安装 Metasploitable2”秘籍。
就像多数扫描需求那样,Nmap 拥有简化 TCP 隐秘扫描执行过程的选项。为了使用 Nmap 执行 TCP 隐秘扫描,应使用 -sS 选项,并附带被扫描主机的 IP 地址。
在提供的例子中,特定的 IP 地址的 TCP 80 端口上执行了 TCP 隐秘扫描。和 Scapy 中的技巧相似,Nmap 监听响应并通过分析响应中所激活的 TCP 标识来识别开放端口。我们也可以使用 Namp 执行多个特定端口的扫描,通过传递逗号分隔的端口号列表。
在这个例子中,目标 IP 地址的端口 21、80 和 443 上执行了 SYN 扫描。我们也可以使用 Namp 来扫描主机序列,通过标明要扫描的之一个和最后一个端口号,以破折号分隔:
在所提供的例子中,SYN 扫描在 TCP 20 到 25 端口上执行。除了拥有指定被扫描端口的能力之外。Nmap 同时拥有配置好的 1000 和常用端口的列表。我们可以执行这些端口上的扫描,通过不带任何端口指定信息来运行 Nmap:
在上面的例子中,扫描了 Nmap 定义的 1000 个常用端口,用于识别 Metasploitable2 系统上的大量开放端口。虽然这个技巧在是被多数设备上很高效,但是也可能无法识别模糊的服务或者不常见的端口组合。如果扫描在所有可能的 TCP 端口上执行,所有可能的端口地址值都需要被扫描。定义了源端口和目标端口地址的 TCP 头部部分是 16 位长。并且,每一位可以为 1 或者 0。因此,共有 2 ** 16 或者个可能的 TCP 端口地址。对于要扫描的全部可能的地址空间,需要提供 0 到的端口范围,像这样:
这个例子中,Metasploitable2 系统上所有可能的和 TCP 地址都扫描了一遍。要注意该扫描中识别的多数服务都在标准的 Nmap 1000 扫描中识别过了。这就表明在尝试识别目标的所有可能的攻击面的时候,完整扫描是个更佳实践。Nmap 可以使用破折号记法,扫描主机列表上的 TCP 端口:
这个例子中,TCP 80 端口的 SYN 扫描在指定地址范围内的所有主机上执行。虽然这个特定的扫描仅仅执行在单个端口上,Nmap 也能够同时扫描多个系统上的多个端口和端口范围。此外,Nmap 也能够进行配置,基于 IP 地址的输入列表来扫描主机。这可以通过 -iL 选项并指定文件名,如果文件存放于执行目录中,或者文件路径来完成。Nmap 之后会遍历输入列表中的每个地址,并对地址执行特定的扫描。
Nmap SYN 扫描背后的底层机制已经讨论过了。但是,Nmap 拥有多线程功能,是用于执行这类扫描的快速高效的方式。
除了其它已经讨论过的工具之外,Metasploit 拥有用于 SYN 扫描的辅助模块。这个秘籍展示了如何使用 Metasploit 来执行 TCP 隐秘扫描。
为了使用 Metasploit 执行 TCP 隐秘扫描,你需要一个运行 TCP 网络服务的远程服务器。这个例子中我们使用 Metasploitable2 实例来执行任务。配置 Metasploitable2 的更多信息请参考之一章中的“安装 Metasploitable2”秘籍。
Metasploit 拥有可以对特定 TCP 端口执行 SYN 扫描的辅助模块。为了在 Kali 中启动 Metasploit,我们在终端中执行 msfconsole 命令。
为了在 Metasploit 中执行 SYN 扫描,以辅助模块的相对路径调用 use 命令。一旦模块被选中,可以执行 show options 命令来确认或修改扫描配置。这个命令会展示四列的表格,包括 name 、 current settings 、 required 和 description 。 name 列标出了每个可配置变量的名称。 current settings 列列出了任何给定变量的现有配置。 required 列标出对于任何给定变量,值是否是必须的。 description 列描述了每个变量的功能。任何给定变量的值可以使用 set 命令,并且将新的值作为参数来修改。
在上面的例子中, RHOSTS 值修改为我们打算扫描的远程系统的 IP 地址。地外,线程数量修改为 20。 THREADS 的值定义了在后台执行的当前任务数量。确定线程数量涉及到寻找一个平衡,既能提升任务速度,又不会过度消耗系统资源。对于多数系统,20 个线程可以足够快,并且相当合理。 PORTS 值设为 TCP 端口 80(HTTP)。修改了必要的变量之后,可以再次使用 show options 命令来验证。一旦所需配置验证完毕,就可以执行扫描了。
上面的例子中,所指定的远程主机的钱 100 个 TCP 端口上执行了 TCP SYN 扫描。虽然这个扫描识别了目标系统的多个设备,我们不能确认所有设备都识别出来,除非所有可能的端口地址都扫描到。定义来源和目标端口地址的TCP 头部部分是 16 位长。并且,每一位可以为 1 或者 0。因此,共有 2 ** 16 或个可能的 TCP 端口地址。对于要扫描的整个地址空间,需要提供 0 到的 端口范围,像这样:
在这个李忠,远程系统的所有开放端口都由扫描所有可能的 TCP 端口地址来识别。我们也可以修改扫描配置使用破折号记法来扫描地址序列。
这个例子中,TCP SYN 扫描执行在由 RHOST 变量指定的所有主机地址的 80 端口上。与之相似, RHOSTS 可以使用 CIDR 记法定义网络范围。
Metasploit SYN 扫描辅助模块背后的底层原理和任何其它 SYN 扫描工具一样。对于每个被扫描的端口,会发送 SYN 封包。SYN+ACK 封包会用于识别活动服务。使用 MEtasploit 可能更加有吸引力,因为它拥有交互控制台,也因为它是个已经被多数渗透测试者熟知的工具。
除了我们之前学到了探索技巧,hping3 也可以用于执行端口扫描。这个秘籍展示了如何使用 hping3 来执行 TCP 隐秘扫描。
为了使用 hping3 执行 TCP 隐秘扫描,你需要一个运行 TCP 网络服务的远程服务器。这个例子中我们使用 Metasploitable2 实例来执行任务。配置 Metasploitable2 的更多信息请参考之一章中的“安装 Metasploitable2”秘籍。
除了我们之前学到了探索技巧,hping3 也可以用于执行端口扫描。为了使用 hping3 执行端口扫描,我们需要以一个整数值使用 –scan 模式来指定要扫描的端口号。
上面的例子中,SYN 扫描执行在指定 IP 地址的 TCP 端口 80 上。 -S 选项指明了发给远程系统的封包中激活的 TCP 标识。表格展示了接收到的响应封包中的属性。我们可以从输出中看到,接收到了SYN+ACK 响应,所以这表示目标主机端口 80 是开放的。此外,我们可以通过输入够好分隔的端口号列表来扫描多个端口,像这样:
在上面的扫描输出中,你可以看到,仅仅展示了接受到 SYN+ACK 标识的结果。要注意和发送到 443 端口的 SYN 请求相关的响应并没有展示。从输出中可以看出,我们可以通过使用 -v 选项增加详细读来查看所有响应。此外,可以通过传递之一个和最后一个端口地址值,来扫描端口范围,像这样:
这个例子中,100 个端口的扫描足以识别 Metasploitable2 系统上的服务。但是,为了执行 所有 TCP 端口的扫描,需要扫描所有可能的端口地址值。定义了源端口和目标端口地址的 TCP 头部部分是 16 位长。并且,每一位可以为 1 或者 0。因此,共有 2 ** 16 或者个可能的 TCP 端口地址。对于要扫描的全部可能的地址空间,需要提供 0 到的端口范围,像这样:
hping3 不用于一些已经提到的其它工具,因为它并没有 SYN 扫描模式。但是反之,它允许你指定 TCP 封包发送时的激活的 TCP 标识。在秘籍中的例子中, -S 选项让 hping3 使用 TCP 封包的 SYN 标识。
在多数扫描工具当中,TCP 连接扫描比 SYN 扫描更加容易。这是因为 TCP 连接扫描并不需要为了生成和注入 SYN 扫描中使用的原始封包而提升权限。Scapy 是它的一大例外。Scapy 实际上非常难以执行完全的 TCP 三次握手,也不实用。但是,出于更好理解这个过程的目的,我们来看看如何使用 Scapy 执行连接扫描。
为了使用 Scapy 执行全连接扫描,你需要一个运行 UDP 网络服务的远程服务器。这个例子中我们使用 Metasploitable2 实例来执行任务。配置 Metasploitable2 的更多信息请参考之一章中的“安装 Metasploitable2”秘籍。
此外,这一节也需要编写脚本的更多信息,请参考之一章中的“使用文本编辑器*VIM 和 Nano)。
Scapy 中很难执行全连接扫描,因为系统内核不知道你在 Scapy 中发送的请求,并且尝试阻止你和远程系统建立完整的三次握手。你可以在 Wireshark 或 tcpdump 中,通过发送 SYN 请求并嗅探相关流量来看到这个过程。当你接收到来自远程系统的 SYN+ACK 响应时,Linux 内核会拦截它,并将其看做来源不明的响应,因为它不知道你在 Scapy 中 发送的请求。并且系统会自动使用 TCP RST 封包来回复,因此会断开握手过程。考虑下面的例子:
这个 Python 脚本的例子可以用做 POC 来演系统破坏三次握手的问题。这个脚本假设你将带有开放端动系统作为目标。因此,假设 SYN+ACK 回复会作为初始 SYN 请求的响应而返回。即使发送了最后的 ACK 回复,完成了握手,RST 封包也会阻止连接建立。我们可以通过观察封包发送和接受来进一步演示。
在这个 Python 脚本中,每个发送的封包都在传输之前展示,并且每个收到的封包都在到达之后展示。在检验每个封包所激活的 TCP 标识的过程中,我们可以看到,三次握手失败了。考虑由脚本生成的下列输出:
在脚本的输出中,我们看到了四个封包。之一个封包是发送的 SYN 请求,第二个封包时接收到的 SYN+ACK 回复,第三个封包时发送的 ACK 回复,之后接收到了 RST 封包,它是最后的 ACK 回复的响应。最后一个封包表明,在建立连接时出现了问题。Scapy 中可能能够建立完成的三次握手,但是它需要对本地 IP 表做一些调整。尤其是,如果你去掉发往远程系统的 TSR 封包,你就可以完成握手。通过使用 IP 表建立过滤机制,我们可以去掉 RST 封包来完成三次握手,而不会干扰到整个系统(这个配置出于功能上的原理并不推荐)。为了展示完整三次握手的成功建立,我们使用 Netcat 建立 TCP 监听服务。之后尝试使用 Scapy 连接开放的端口。
这个例子中,我们在 TCP 端口 4444 开启了监听服务。我们之后可以修改之前的脚本来尝试连接 端口 4444 上的 Netcat 监听服务。
这个脚本中,SYN 请求发送给了监听端口。收到 SYN+ACK 回复之后,会发送 ACK回复。为了验证连接尝试被系统生成的 RST 封包打断,这个脚本应该在 Wireshark 启动之后执行,来捕获请求蓄力。我们使用 Wireshark 的过滤器来隔离连接尝试序列。所使用的过滤器是 tcp && (ip.src == 172.16.36.135 || ip.dst == 172.16.36.135) 。过滤器仅仅用于展示来自或发往被扫描系统的 TCP 流量。像这样:
既然我们已经精确定位了问题。我们可以建立过滤器,让我们能够去除系统生成的 RST 封包。这个过滤器可以通过修改本地 IP 表来建立:
在这个例子中,本地 IP 表的修改去除了所有发往被扫描主机的目标地址的 TCP RST 封包。 list 选项随后可以用于查看 IP 表的条目,以及验证配置已经做了修改。为了执行另一次连接尝试,我们需要确保 Natcat 仍旧监听目标的 4444 端口,像这样:
和之前相同的 Python 脚本可以再次使用,同时 WIreshark 会捕获后台的流量。使用之前讨论的显示过滤器,我们可以轻易专注于所需的流量。要注意三次握手的所有步骤现在都可以完成,而不会收到系统生成的 RST 封包的打断,像这样:
此外,如果我们看一看运行在目标系统的 Netcat 服务,我们可以注意到,已经建立了连接。这是用于确认成功建立连接的进一步的证据。这可以在下面的输出中看到:
虽然这个练习对理解和解决 TCP 连接的问题十分有帮助,恢复 IP 表的条目也十分重要。RST 封包 是 TCP 通信的重要组成部分,去除这些响应会影响正常的通信功能。洗唛按的命令可以用于刷新我们的 iptable 规则,并验证刷新成功:
就像例子中展示的那样, flush 选项应该用于清楚 IP 表的条目。我们可以多次使用 list 选项来验证 IP 表的条目已经移除了。
执行 TCP 连接扫描的同居通过执行完整的三次握手,和远程系统的所有被扫描端口建立连接。端口的状态取决于连接是否成功建立。如果连接建立,端口被认为是开放的,如果连接不能成功建立,端口被认为是关闭的。
关于linux如何扫描网络漏洞的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
成都创新互联科技有限公司,经过多年的不懈努力,公司现已经成为一家专业从事IT产品开发和营销公司。广泛应用于计算机网络、设计、SEO优化、关键词排名等多种行业!
本文题目:Linux网络安全:扫描网络漏洞的实用方法(linux如何扫描网络漏洞)
本文网址:http://www.mswzjz.com/qtweb/news18/189868.html
网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联